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Abstrac:t-This paper presents a simple technique for the efficient treatment of non-uniform body
forces in boundary elements without the need for domain discretization and additional surface
integral evaluations. The distribution of the non-uniform forces in the domain is described using
regression polynomials. Particular integrals corresponding to these polynomials are developed for
the solution of the non-homogeneous differential equations of elasticity. Two-dimensional and
axisymmetric boundary element results for steady state and transient thermoelastic deformations
are obtained using this formulation. Regression polynomials based on only the boundary points
provide good results. Improved results are obtained by including internal points in the regression
analysis. The method allows the use of low order polynomials to model a general distribution of
thermal effects in the domain. Numerical data are given to provide comparisons oflow order versus
high order regression polynomials, and boundary only data versus combined boundary and domain
data based regression polynomials.

INTRODUCTION

The boundary element method primarily involves the discretization of only the boundary
of the object for a linear elastic analysis. The initial attempts to include the effects of body
forces, see for example the textbook by Banerjee and Butterfield (1981), required the
discretization of the domain into cells. Cruse et al. (1977) and Rizzo and Shippy (1978)
presented a formulation that employs the body force potential and the divergence theorem
to reduce the volume integrals involved into an equivalent surface integral for conservative
body forces. Henry et af. (1987) and Pape and Banerjee (1987) introduced a technique
based on the particular integral method for the solution of non-homogeneous ordinary
differential equations to account for conservative body forces through direct nodal cal­
culations. This technique avoided the evaluation of both volume integrals and surface
integrals. Recently, Henry and Banerjee (1988a) developed a particular integral formulation
for non-conservative body forces and presented the results for thermoelastic stress analysis.
In this formulation, the temperature distribution in each region ofa multi-region boundary
discretization, is represented using global shape functions. The coefficients of the global
shape functions are determined based on the temperatures at boundary element nodes and
some interior points. The number of terms in these polynomials is equal to the number of
locations whose temperatures were used in determining these coefficients. The particular
integrals are then developed independently for each sub-region using the global shape
functions. This technique has also been extended by Henry and Banerjee (l988b) for the
elastoplastic analysis of two-dimensional and three-dimensional objects.

A different approach, also based on the particular integral method for the treatment
of non-conservative body forces, is presented in this paper. This approach starts by repre­
senting the distribution of the body forces in a domain using polynomials that are based
on the statistical procedure of linear regression, The process of linear regression forces the
interpolation error to be normal to the domain in a least squared sense, for example, see
the textbook by Neter et al. (1985). This results in a more accurate representation of the
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body force field compared to other available interpolations. Also, any general distribution
can be approximated using a polynomial which retains the minimum number of terms
required for an accurate interpolation. The number of terms retained does not have to be
equal to the number ofdata points used to generate the regression polynomial. For example,
a regression polynomial with only two terms but based on 16 data points provided excellent
results for the solution of an axisymmetric cylinder under steady-state thermal loading as
shown in a later section. After obtaining the regression polynomials representing a general
distribution of body forces, particular integrals corresponding to these polynomials are
presented. The regression particular integral formulation is implemented in a multi-zone
boundary element program for two-dimensional and axisymmetric analysis. respectively.
This approach is applied to the solution of steady-state thermoelastic and transient ther­
moelastic examples. The results obtained indicate good accuracy for these analyses. Numeri­
cal data are provided to study the effect ofnumber ofdata points used to obtain the regression
polynomial on the accuracy of thermoelastic responses. The results obtained by using
different orders of regression polynomials are also compared.

THERMOELASTIC OEM WITH PARTICULAR INTEGRALS

The linear, non-homogeneous differential equation of equilibrium for an elastic body
is given as

(I)

where

(2)

A.,jJ. are Lame's constants, u;is the displacement and/; is the body force. For a body subjected
to thermal loading, the contribution of this loading to the body force is given as

(3)

where oc is the coefficient of thermal expansion and T is the temperature. The particular
integral method proceeds by first decomposing the response variables as

u; = uf+uf

t; = tf +tf (4)

where the superscripts c and p refer to the complementary and the particular solution,
respectively. Thus, for thermoelastic displacements, uf and uf are given by the equations

(5)

and

(6)

Following the theory of linear non-homogeneous differential equations, it is known that
the particular integral solution uf is not unique and any expression satisfying eqn (6) is a
valid particular integral. However, as shown in a later section, the particular integral
solution must be chosen carefully for computational purposes.

For the boundary element method, the integral equation due to Somigliana satisfies
the homogeneous eqn (5) and is used to describe the complementary solution as
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(7)

where Gij and Fij are the fundamental solutions for displacements and tractions, respec­
tively; Cij is the corner tensor; and r is the boundary of the object. A procedure for
determining the particular integral function uf for the thermoelastic problem is described
in the next section.

Discretizing the integral eqn (7) using boundary elements leads to a system of matrix
equations given as

[F]{UC
} = [G]{t C

}.

Substituting for {if} and {tC} from eqn (4) leads to the equation

[F]( {u} - {uP}) = [G]( {t} - {tP}).

(8)

(9)

{t} is the traction obtained from the derivatives of total displacement and thus includes the
effects of both mechanical and thermal loading, respectively. The boundary conditions,
however, are applied to the mechanical component of the total traction only. This com­
ponent is explicitly obtained by adding and subtracting the thermal component given by
the quantity (3A.+2Jl)ocT{n}) from the right-hand side ofeqn (9). Rearranging, we get

where

{t«)} = {t}-(3A.+2Jl)ocT{n}

{tP} = {tP } -(3A.+2Jl)ocT{n}.

(10)

(11)

(12)

In eqn (11), {l<)} is the externally applied traction and the specified traction boundary
conditions are applied to this quantity, {n} is the outward normal vector at the boundary
collocation point. The matrix {lP} is referred to here as the modified particular integral
vector. It is noted that the vectors {uP} and {tP} may include the contributions due to the
various types of body forces acting on the object, such as gravitational, centrifugal, and
thermal.

REGRESSION MODEL FOR TEMPERATURE DISTRIBUTIONS

A procedure for obtaining the particular integrals for thermoelastic response is
developed next. The following discussion holds for any non-conservative body force with
a general distribution over the domain of the body. Only the case of thermal body force is
discussed in detail.

It is not generally possible to obtain the particular solutions {uP} and {tP} for a general
distribution of body forces. To enable the determination of particular integral solutions for
these body forces, their distribution is first represented in a form for which it is possible to
obtain such particular integral solutions using the conventional methods, such as the
method of undetermined coefficients. In the present study, the distribution of body forces is
represented using a linear regression model.

A simple regression model for a system defined by a single variable can be written as

(13)

where Xi are the values of the independent variables, for example, geometric coordinates;
Yi are the values of the response variables, for example, temperature; Po and PI are the
regression coefficients; and ti is an error term with mean E(ti) = o.
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For the present case, it is required to determine the regression coefficients 130 and 131
based on the quantities (Xi' y;) available at N data points. To find '"good" estimators of the
regression parameters, the method of least squares is employed for which 130 and 131 have
the values bo and b), respectively, that minimize the quantity Q given by

N

Q = L (Yi-f30-f3I X;)".
i= I

(14)

To minimize Q, its partial derivatives with respect to the coefficients to be determined are
set equal to zero. Thus, bo and b l can be obtained from the simultaneous equations

N N

L y;-Nbo-b l LXi = 0
;= I i= I

.V N N

L xiy;-boL xi-bl L xl = o.
i= I i= I ;= I

(15)

The above procedure describes a simple regression model for one independent variable. A
similar procedure is applied for more than one independent variable. For such cases not all
terms of the regression model are retained. The decision for retaining or deleting a term
corresponding to a variable or product of variables may be based on some criterion, such
as, (a) the sum of squares of error (SSE) reduction criteria, (b) coefficients of partial
correlation criteria, or (c) the F* statistics criteria. These criteria are described in the
textbooks on statistics, for example, Neter et al. (1985).

In the present study, a stepwise regression scheme in conjunction with the F* statistics
criteria was employed in obtaining the regression model. The stepwise regression scheme
proceeds by adding a new term to the regression model and thereafter applying F* criteria,
term by term, to determine if the existing terms should be retained or deleted. This procedure
thus results in a robust representation of the body force field being modeled. The regression
models were obtained in this study using the subroutine library SPSSX (1983).

PARTICULAR INTEGRALS FOR REGRESSION MODELS

The particular integral expressions for terms up to the third-order in the regression
model are presented below. Corresponding expressions for terms of order higher than three
can be similarly developed. Consider the regression model given by the polynomial up to
the third-order as

The particular integral expressions corresponding to the regression model in eqn (16) are
given as

(17)

(18)

where
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For the terms in eqn (16) that are not selected by the stepwise regression procedure
explained before; the corresponding coefficients are set equal to zero in eqns (16)-(18). To
obtain the particular integrals for tractions, the strains corresponding to the displacement
particular integrals in eqns (17) and (18) are first determined from the relation

I (aUf auI'.)P ' _J

f-jj - 2 aXj + OXj •

Using Hooke's Law, the stresses can then be obtained as

Finally, the traction solutions are obtained using the relation

(19)

(20)

(21)

where nj is the outward normal.
The particular integral expressions for the axisymmetric case can be similarly deter­

mined. For example, for a regression model representing the radial distribution of tem­
peratures in the form

the particular integral expressions for displacements may be written as

(1-2v) n b
K

,(K+2)

uP
- L ~---

r - 2Jl(l-v) K-O (K+3)

uf = o.

(22)

(23)

The traction particular integrals are derived by a procedure similar to the procedure
explained above for the 2-D case.

APPROPRIATE CHOICE OF PARTICULAR INTEGRAL SOLUTION

Any function uf that satisfies eqn (6) is considered to be a valid particular integral
solution. It is known that this function is not unique. A proper care must be exercised in
the selection of particular integrals for computational purposes. The adverse effect of an
improper selection is explained by considering a particular integral solution which can be
written as

uf=uf+!if

If = tf+tr (24)

where uf and !if are such that uf satisfies eqn (6) and (!if) = O. Thus (uf +!if) also satisfies
eqn (6) and the expressions in eqn (24) constitute a valid particular integral solution.
Substituting eqn (24) into eqn (9) gives

[F]{u} = [G]{I} + [Fl({uP } + {17})-[Gl({tP } +{t<}).

Rearranging eqn (25), we get

(25)
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[F]{ u} = [G]{ t} + [F]{ UP} - [G]{ ip
} +([F]{u'} - [G]{ it}). (26)

The last term within parentheses on the right-hand side of eqn (26) should vanish since it
involves the complementary system as seen from eqn (8). However, since [F] and [G] are
obtained numerically, this term will not be exactly equal to zero in a boundary element
analysis and will provide an erroneous contribution to the right-hand side of eqn (26). This
will then lead to an error in the solution of response variables obtained from eqn (26).

DATA POINTS FOR REGRESSION MODEL

To obtain a regression model representative of the distribution of temperatures in the
domain, the model should be obtained based on a sufficient number of data points. These
data points may lie on the boundary or within the domain. The computation oftemperatures
at any location in the domain of the object, however, requires additional computation
in the BEM approach. For the case of steady state thermoelasticity, since the extreme
temperatures occur on the boundary, it is sufficient to use data points only on the boundary
to obtain the regression model. The transient thermoelasticity problems may also be treated
by considering only the boundary data points for the regression model. This may not,
however, provide a very accurate response especially for cases when high temperature
gradients exist in the domain. To obtain an improved response, some internal points may
be used in addition to the boundary points for the regression model. It is noted that the
inclusion of these internal points does not add to the number ofunknowns but serves merely
to improve the quality of the regression model. In case of multi-zone BEM analysis, a
separate regression model may be developed for each zone to provide a better representation
of the distribution of temperatures in the domain. For large domains it is recommended
that these domains be broken up into zones as the regression polynomial representation of
temperature field in a large domain may not lead to very accurate results.

NUMERICAL RESULTS

The boundary integral eqn (10) is solved to obtain the thermoelastic response. The
usual procedure of applying the known boundary conditions, assembling the unknown
boundary quantities on the left-hand side and the known quantities on the right, and solving
the resulting system of equations is followed (Banerjee and Butterfield, 1981). The above
formulation is applied to obtain numerical results for both steady state and transient
responses. The computations reported here were carried out on a RIDGE 3200 computer
system. The two-dimensional steady state thermoelastic analysis by regression particular
integrals is evaluated for a thick strip with a central hole under plane strain conditions. The
axisymmetric steady state and transient thermoelastic response is examined for a thick
cylinder under plane strain conditions.

Steady state response of a strip with a hole
A rectangular strip with a circular hole subjected to a harmonic temperature dis­

tribution was examined. A half symmetry model of the strip along with the geometric data
are shown in Fig. lao The material data used were: modulus of elasticity, E = 1000 psi;
Poisson's ratio, v = 0.3; coefficient of thermal expansion, (X = 0.02 in/injOF. The harmonic
temperature distribution on the strip was given by

(27)

The half strip was modeled using 17 continuous quadratic boundary elements as shown in
Fig. la. In this figure, all boundary elements are of equal length. The top and bottom
surfaces (y = 0 and y = 3 in) are both free, the left vertical face (x = 0) is completely fixed,
and the vertical sides of the right face (x = 4 in) are supported on rollers in the x-direction
to simulate the symmetry condition. The results were obtained for three cases. Case I : Using
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Fig. I. Thick strip with a central hole (a) boundary element mesh, (b) deflected profile due to
prescribed temperature distribution.
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the surface integral formulation for thermal body forces caused by harmonic temperature
distribution due to Cruse et al. (1977); Case II: Using the particular integral formulation
based on exact temperature distribution given by eqn (27); and Case III: Using the
particular integral formulation based on the regression models developed in this paper for
representing the temperature distribution. It is noted that for Case III the regression
model produced the exact distribution given by eqn (27) using only the boundary point
information. However, these models were constrained so that the terms with x2 and y2 both
have a coefficient of zero. Two different regression models were generated. The first model
[Case III (a)] was based solely on the boundary points and is given as

T(x,y) = -4.007028+0.802753x-0.625604y+0.374589x3

- 0.510694y 3 - 0.043634x4 + 0.082170y4. (28)

The second model [Case III (b)] was based on the boundary points as well as six internal
points as shown in Fig. I. This model is given as

T(x,y) = -4.019011 + 0.799393x-0.641 360y+ 0.380352x3

-O.504413y 3 -0.044988x4 +0.080640y4. (29)

The results for all these cases are shown in Tables I and 2. It is seen that for an exact
representation as in Case II, the particular integral technique produces very accurate results.
For approximate representations of the temperature field such as those using the regression
models [Case III (a) and Case III (b)] an improved accuracy is obtained as the number of
data points used to create the regression model are increased. Good agreement is seen for
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Table I. Comparison ofdisplacements in two dimensional response using surface integral approach and regression
particular integral approach for a thick strip with a central circular hole

Displacement (in)

Case I Case II Case III (a) Case III (b)

Node U, c.:,. U, U.. U U,. C, u,.,

A -1.492 1.486 -1.491 1.487 -1.442 1.479 -IA48 1.485
B -2.923 -0.201 -2.922 -0.200 -2.918 -0.142 -2.927 -0.144
C 0.000 -2.552 0.000 -2.552 0.000 -2.536 0.000 -2.539
D -1.287 0.554 -1.280 0.556 -1.282 0.549 -1.284 0.549
E 0.000 1.023 0.000 1.023 0.000 1.014 0.000 1.017
F -3.062 -1.318 -3.061 -1.318 -3.056 -1.371 -3.065 -1.368
G -1.686 -3.183 -1.686 -3.183 -1.636 -3.168 -1.641 -3.173

Table 2. Comparison of stresses in two-dimensional response using
surface integral approach and regression particular integral approach

for a thick strip with a central circular hole

Stress at fixed end, (1" (psi)
Y-coord.

(in) Case I Case II Case III (a) Case III (b)

0.00 164.11 164.21 163.07 163.80
0.50 -52.15 -52.13 -49.32 -49.38
1.00 -1.63 -1.60 -1.62 0.02
1.50 10.55 10.58 9.16 9.29
2.00 78.29 78.33 79.05 79.12
2.50 56.06 56.13 58.08 57.89
3.00 636.05 636.21 634.25 634.85

both the displacements and stresses due to thermoelastic behavior. In Table 2 which shows
a comparison of stresses for various cases, a value of 0.02 psi corresponding to y = I in for
Case III (b) does not represent a disagreement with the results obtained for the other cases
or a bad convergence with an increase in the number of data points. This is because for all
the cases at this location the stress value nearly vanishes compared to the maximum stress
at y = 3 in. A plot showing the deformed shape of the strip is also shown in Fig. Ib. It is
noted from this deformed profile that the extent of deformation in the strip is severe and
that the present formulation can predict such deformations with reasonable accuracy.

Steady state response of a cylinder
The cylinder has an inner radius RI (= 3 in) and an outer radius R2 (= 6 in). The

material data used was: modulus of elasticity, E = 1000 psi; Poisson's ratio, v = 0.3 ;
coefficient of thermal expansion, ex = 0.02/in/inoF; density, p = 0.283 Ib/in 3

; specific
heat = 0.8 x 10- 3 Btu/in s OF. A radial section of the cylinder was modeled using eight
axisymmetric boundary elements. The geometry and mesh distribution for the axisymmetric
model are shown in Fig. 2. All elements in this figure are of equal length. In the present
study, continuous quadratic boundary elements were employed.

Fig. 2. Axisymmetric boundary element mesh for a thick cylinder.
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The inner face of the circular cylinder is subjected to a temperature of 5°F while the
outer face is subjected to a temperature of 3°F. The steady state temperature distribution
in the cylinder due to these conditions is given by

2.0 In rj 2.0 In r
T(r) = 5.0- + ----,---

In (r;/ro ) In (r;/ro)
(30)

where r is the radial distance, rj is the inner radius, and ro is the outer radius. The thermo­
elastic stresses due to this distribution are obtained by an axisymmetric analysis. These
results are also compared with the analytical solution by Boley and Weiner (1960) to assess
the effectiveness of the present formulation.

Two different cases with regression models of different orders were obtained for
this study. Both these models were based on the temperatures at 16 boundary points
corresponding to the BEM mesh. The first case uses a regression model with a linear
temperature distribution and the second case uses a regression model with a quadratic
temperature distribution. The regression models were obtained using stepwise regression
procedure and are given as

Modell, Linear distribution:

T = 6.878536-0.660870r

Model 2, Quadratic distribution:

T = 8.337613 -1.343036r+0.075796r2•

(31)

(32)

The thermoelastic response results for both these cases are shown in Tables 3 and 4. The
analytical results for this case are also shown in Tables 3 and 4 for comparison.
A good agreement of results is obtained for both the linear and the quadratic temperature
representations.

Table 3. Radial displacements in axisymmetric thermoelastic
response for a thick cylinder under a steady state temperature

distribution

Radial displacement (U,)
(in)

Node Analytical Modell Model 2

I 0.29453 0.29599 0.29451
2 0.36069 0.36137 0.36072
3 0.41771 0.41917 0.41791
4 0.46783 0.47055 0.46807
5 0.51249 0.51619 0.51260
6 0.55267 0.55656 0.55261
7 0.58906 0.59194 0.58898

Table 4. Axial stresses and hoop stresses in axisymmetric thermoelastic response for a thick cylinder under a
steady state temperature distribution

Axial stress «(1z) Hoop stress «(1,)
(psi) (PSi)

Node Analytical Modell Mode 2 Analytical Modell Model 2

I -110.49 -107.19 -110.02 -34.971 -31.788 -35.235
2 -97.78 -97.98 -98.16 -18.510 -18.363 -18.577
3 -86.77 -88.36 -86.87 -6.446 -8.030 -6.968
4 -77.06 -79.06 -77.07 2.907 1.466 3.095
5 -68.38 -69.55 -68.07 10.466 9.756 10.533
6 -60.52 -60.17 -60.33 16.775 17.706 17.055
7 -53.34 -50.69 -53.55 22.172 25.155 21.844
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Transient response of a cylinder
The transient uncoupled thennoelastic response of the above cylinder was obtained

using the present axisymmetric BEM fonnulation. The entire cylinder was initially assumed
to be at a temperature of OaF. The inner and the outer faces of the cylinder were then
suddenly raised to a temperature of 5°F and 3°F, respectively. A finite element solution
was first obtained for this problem using the commercial finite element code ABAQUS
(Hibbitt et al., 1987). The cylinder was discretized using six, 8-noded, axisymmetric finite
elements. For the thennal analysis, the element DCAX8 was used, and for the thennoelastic
analysis the element CAX8 was used. The temperature distributions in the cylinder at
different time instants obtained from the finite element analysis are shown in Fig. 3. These
temperature distributions were used in the present study to generate the regression models
for thennoelastic BEM analysis. Different regression models were generated at different
time instants using the stepwise regression procedure. The regression models were obtained
based only on the 16 boundary points corresponding to the boundary element nodes and
are given as

Time, t = 21.1 s

T = 44.807698 - 21.320794r+ 2.782188r2 - 0.01 0830r4

Time, t = 56.9 s

T = 25.978351-10.954468,+ 1.366600,2 -0.004969,4

Time, t = 102.0 s

T = 16.414416-5.771885,+0.678490,2 -0.002473r4

Time, t = 656.0 s

T = 9.110988-1.827841,+0.158292,2-6.50443 x 10- 4,4.

(33)

(34)

(35)

(36)

The transient thennoelastic results from the present analysis are shown in Figs 4
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Fig. 3. Temperature distribution at various time instants for a thick cylinder.



0.,

0.2

.s
; 0.4
II
E
8
o

lO.3
Q

481Thermoelasticity with boundary elements

0.1$ .------------------.
/e

- FEM (ABAQUS) ,.."
o BEM It - 21.1 II /e
6 BEM (t-~.911 /'
o BEM (t-l02.01' /e
e BEM tt-6S6.011/

/e
/e

e

6.0,.,5.04.0 4.'
0.1 L..-_...I-_--L.__L..-_-'-_---'-_---'

3.0 3.'

Radiul I in.l

Fig. 4. Radial displacements at various time instants for a thick cylinder.

through 6 along with the results obtained using finite element analysis. A good agreement
of results is seen. An improved agreement of the thermoelastic results during the early
transient response may be obtained by using a few internal points also, since high tem­
perature gradients exist in the domain during this stage of the response.

CONCLUDING REMARKS

The distribution of temperature within the domain of a body is represented using a
regression model. The model is based on the temperature data at the boundary element
nodes and a few interior points. A stepwise regression technique that ensures the selection
ofonly the most effective terms is used to obtain the regression model. This model uses lower
order polynomials and fewer terms to effectively represent the temperature distribution in
a domain. Particular integrals are developed for the regression model obtained to account
for the thermal body forces. The present technique avoids the need for subdividing the
domain into cells for computing volume integrals for the treatment of non-uniform body
forces. In this paper the non-uniform body force field is represented using a regression
model which provides an approximate representation of this field. For a large domain, this

Or----------------,
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e llE:M It-ese.o I'
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3.0 3.5 4.0 4.11 1l.0 ll.ll 6.0

Radius lin.)

Fig. 5. Axial stresses at various time instants for a thick cylinder.
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Fig. 6. Hoop stresses at various time instants for a thick cylinder.

representation will provide only an approximate response but at the same time will highlight
the high stress regions. In these situations it is recommended that, after first peforming the
"boundary data only" analysis, a more extensive analysis be carried out by subdividing
the domain into multiple regions and developing the regression model for each region
separately. This approach is applied to the analysis of steady state and transient thermo­
elastic responses of two-dimensional and axisymmetric boundary element problems,
respectively. Numerical examples are presented to demonstrate the effectiveness of the
present technique.
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